Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
1.
J Pharm Biomed Anal ; 241: 115984, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266453

RESUMO

Flonoltinib Maleate (FM) is a dual-target inhibitor that selectively suppresses Janus kinase 2/FMS-like tyrosine kinase 3 (JAK2/FLT3), which is currently in phase I/IIa clinical trial in China for the treatment of myeloproliferative neoplasms (MPNs). In this research, we used [14C]-labeled FM (14C-FM) to investigate the distribution, metabolism, and excretion of FM in rats using High-Performance Liquid Chromatography coupled with High-Resolution Mass Spectrometry/Radioactivity Monitoring (HPLC-HRMS/RAM) and liquid scintillation counter. The results revealed that FM displayed widespread distribution in rats. Furthermore, FM demonstrated rapid clearance without any observed risk of organ toxicity attributed to accumulation. Profiling of FM metabolites in rat plasma, feces, urine, and bile identified a total of 17 distinct metabolites, comprising 7 phase I metabolites and 10 phase II metabolites. The major metabolic reactions involved oxygenation, dealkylation, methylation, sulfation, glucuronidation and glutathione conjugation. Based on these findings, a putative metabolic pathway of FM in rats was proposed. The overall recovery rate in the excretion experiment ranged from 93.04 % to 94.74 %. The results indicated that FM undergoes extensive hepatic metabolism in SD rats, with the majority being excreted through bile as metabolites and ultimately eliminated via feces. A minor fraction of FM (<10 %) was excreted through renal excretion in the form of urine. Integration of the current results with previous pharmacokinetic investigations of FM in rats and dogs enables a comprehensive elucidation of the in vivo ADME processes and characteristics of FM, thereby establishing a solid foundation for subsequent clinical investigations of FM.


Assuntos
Bile , Maleatos , Ratos , Animais , Cães , Ratos Sprague-Dawley , Distribuição Tecidual , Bile/metabolismo , Fezes/química , Maleatos/análise , Maleatos/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Administração Oral
2.
Acta Ophthalmol ; 100(7): 788-796, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35080812

RESUMO

PURPOSE: Tyrosine kinase inhibitors inhibit VEGF receptors. If delivered to the retina, they might inhibit oedema and neovascularization such as in age-related macular degeneration and diabetic retinopathy. The aim of this study was to formulate cediranib maleate, a potent VEGF inhibitor, as γ-cyclodextrin nanoparticle eye drops and measure the retinal delivery and overall ocular pharmacokinetics after a single-dose administration in rabbits. METHODS: A novel formulation technology with 3% cediranib maleate as γ-cyclodextrin micro-suspension was prepared by autoclaving method. Suitable stabilizers were tested for heat-stable eye drops. The ophthalmic formulation was topically applied to one eye in rabbits. The pharmacokinetics in ocular tissues, tear film and blood samples were studied at 1, 3 and 6 hr after administration. RESULTS: γ-cyclodextrin formed complex with cediranib maleate. The formation of γ-cyclodextrin nanoparticles occurred in concentrated complexing media. Combined stabilizers prevented the degradation of drug during the autoclaving process. Three hours after administration of the eye drops, treated eyes showed cediranib levels of 737 ± 460 nM (mean ± SD) in the retina and 10 ± 6 nM in the vitreous humour. CONCLUSIONS: Cediranib maleate in γ-cyclodextrin nanoparticles were stable to heat in presence of stabilizers. The drug as eye drops reached the retina in concentrations that are more than 100 times higher than the 0.4 nM IC50 value reported for the VEGF type-II receptor and thus, presumably, above therapeutic level. These results suggest that γ-cyclodextrin-based cediranib maleate eye drops deliver effective drug concentrations to the retina in rabbits after a single-dose administration.


Assuntos
Ciclodextrinas , Nanopartículas , gama-Ciclodextrinas , Administração Tópica , Animais , Ciclodextrinas/metabolismo , Ciclodextrinas/farmacologia , Indóis , Maleatos/metabolismo , Maleatos/farmacologia , Soluções Oftálmicas , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas , Coelhos , Retina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , gama-Ciclodextrinas/farmacocinética
3.
Biotechnol Bioeng ; 118(5): 1840-1850, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33512000

RESUMO

Maleate is one of the most important unsaturated four-carbon dicarboxylic acids. It serves as an attractive building block in cosmetic, polymer, and pharmaceutical industries. Currently, industrial production of maleate relies mainly on chemical synthesis using benzene or butane as the starting materials under high temperature, which suffers from strict reaction conditions and low product yield. Here, we propose a novel biosynthetic pathway for maleate production in engineered Escherichia coli. We screened a superior salicylate 5-hydroxylase that can catalyze hydroxylation of salicylate into gentisate with high conversion rate. Then, introduction of salicylate biosynthetic pathway and gentisate ring cleavage pathway allowed the synthesis of maleate from glycerol. Further optimizations including enhancement of precursors supply, disruption of competing pathways, and construction of a pyruvate recycling system, boosted maleate titer to 2.4 ± 0.1 g/L in shake flask experiments. Subsequent scale-up biosynthesis of maleate in a 3-L bioreactor under fed-batch culture conditions enabled the production of 14.5 g/L of maleate, indicating a 268-fold improvement compared with the titer generated by the wildtype E. coli strain carrying the entire maleate biosynthetic pathway. This study provided a promising microbial platform for industrial level synthesis of maleate, and demonstrated the highest titer of maleate production in microorganisms so far.


Assuntos
Escherichia coli/genética , Maleatos/metabolismo , Engenharia Metabólica/métodos , Ácido Chiquímico/metabolismo , Técnicas de Cultura Celular por Lotes , Vias Biossintéticas/genética , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Glicerol/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo
4.
Chem Phys Lipids ; 232: 104954, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32827557

RESUMO

Lipid emulsions are potential carriers for poorly water-soluble drugs. Previously, we revealed that lipid nanoparticles complexed with styrene maleic acid copolymer (SMA) disintegrate under acidic pH. In the present study, SMA-containing lipid emulsions (SMA emulsions) were prepared and their physicochemical and biological properties were examined to test whether SMA emulsions could be used as a trigger to facilitate drug release in response to pH reduction. By sonicating lipid and SMA mixtures, homogeneously sized SMA emulsion particles were prepared as verified via dynamic light scattering and transmission electron microscopy. Upon the reduction of solution pH, disintegration of SMA emulsions was observed, which may be utilized for drug release at mildly acidic pH. In addition, the sensitivity to pH changes could be controlled by altering the lipid composition. Serum proteins bound to SMA emulsions were analyzed to predict the metabolic fate upon intravenous injection. Predictably, apolipoproteins were abundantly bound, suggesting that SMA emulsions should avoid being recognized as foreign substances. Furthermore, subcellular distribution studies using a human breast cancer cell line (MDA-MB-231) demonstrated that SMA emulsions localize to lysosomes, which have a lower pH. These results suggest that SMA emulsions could be promising pH-responsive drug carriers.


Assuntos
Portadores de Fármacos/química , Lipídeos/química , Maleatos/química , Poliestirenos/química , Transporte Biológico , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Linhagem Celular Tumoral , Portadores de Fármacos/metabolismo , Desenho de Fármacos , Emulsões , Humanos , Concentração de Íons de Hidrogênio , Espaço Intracelular/metabolismo , Maleatos/metabolismo , Poliestirenos/metabolismo , Sonicação
5.
ChemSusChem ; 13(19): 5295-5300, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32658366

RESUMO

Power-to-X technologies have the potential to pave the way towards a future resource-secure bioeconomy as they enable the exploitation of renewable resources and CO2 . Herein, the coupled electrocatalytic and microbial catalysis of the C5 -polymer precursors mesaconate and 2S-methylsuccinate from CO2 and electric energy by in situ coupling electrochemical and microbial catalysis at 1 L-scale was developed. In the first phase, 6.1±2.5 mm formate was produced by electrochemical CO2 reduction. In the second phase, formate served as the substrate for microbial catalysis by an engineered strain of Methylobacterium extorquens AM-1 producing 7±2 µm and 10±5 µm of mesaconate and 2S-methylsuccinate, respectively. The proof of concept showed an overall conversion efficiency of 0.2 % being 0.4 % of the theoretical maximum.


Assuntos
Dióxido de Carbono/metabolismo , Técnicas de Cultura de Células/métodos , Polímeros/química , Polímeros/metabolismo , Catálise , Técnicas Eletroquímicas , Formiatos/química , Formiatos/metabolismo , Fumaratos/química , Fumaratos/metabolismo , Maleatos/química , Maleatos/metabolismo , Methylobacterium extorquens/metabolismo , Succinatos/química , Succinatos/metabolismo
6.
Elife ; 92020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32496192

RESUMO

Acid-sensing ion channels (ASICs) are proton-gated members of the epithelial sodium channel/degenerin (ENaC/DEG) superfamily of ion channels and are expressed throughout the central and peripheral nervous systems. The homotrimeric splice variant ASIC1a has been implicated in nociception, fear memory, mood disorders and ischemia. Here, we extract full-length chicken ASIC1 (cASIC1) from cell membranes using styrene maleic acid (SMA) copolymer, elucidating structures of ASIC1 channels in both high pH resting and low pH desensitized conformations by single-particle cryo-electron microscopy (cryo-EM). The structures of resting and desensitized channels reveal a reentrant loop at the amino terminus of ASIC1 that includes the highly conserved 'His-Gly' (HG) motif. The reentrant loop lines the lower ion permeation pathway and buttresses the 'Gly-Ala-Ser' (GAS) constriction, thus providing a structural explanation for the role of the His-Gly dipeptide in the structure and function of ASICs.


Assuntos
Canais Iônicos Sensíveis a Ácido/química , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Motivos de Aminoácidos , Animais , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Galinhas , Microscopia Crioeletrônica , Cristalografia por Raios X , Glicina/genética , Glicina/metabolismo , Histidina/genética , Histidina/metabolismo , Concentração de Íons de Hidrogênio , Transporte de Íons , Maleatos/química , Maleatos/metabolismo , Conformação Proteica
7.
J Biol Chem ; 295(25): 8460-8469, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32358064

RESUMO

Prions are lipidated proteins that interact with endogenous lipids and metal ions. They also assemble into multimers and propagate into the infectious scrapie form known as PrPSc The high-resolution structure of the infectious PrPSc state remains unknown, and its analysis largely relies on detergent-based preparations devoid of endogenous ligands. Here we designed polymers that allow isolation of endogenous membrane:protein assemblies in native nanodiscs without exposure to conventional detergents that destabilize protein structures and induce fibrillization. A set of styrene-maleic acid (SMA) polymers including a methylamine derivative facilitated gentle release of the infectious complexes for resolution of multimers, and a thiol-containing version promoted crystallization. Polymer extraction from brain homogenates from Syrian hamsters infected with Hyper prions and WT mice infected with Rocky Mountain Laboratories prions yielded infectious prion nanoparticles including oligomers and microfilaments bound to lipid vesicles. Lipid analysis revealed the brain phospholipids that associate with prion protofilaments, as well as those that are specifically enriched in prion assemblies captured by the methylamine-modified copolymer. A comparison of the infectivity of PrPSc attached to SMA lipid particles in mice and hamsters indicated that these amphipathic polymers offer a valuable tool for high-yield production of intact, detergent-free prions that retain in vivo activity. This native prion isolation method provides an avenue for producing relevant prion:lipid targets and potentially other proteins that form multimeric assemblies and fibrils on membranes.


Assuntos
Encéfalo/metabolismo , Lipídeos/química , Maleatos/química , Nanoestruturas/química , Poliestirenos/química , Proteínas Priônicas/metabolismo , Animais , Cricetinae , Maleatos/síntese química , Maleatos/metabolismo , Metilaminas/química , Camundongos , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Poliestirenos/síntese química , Poliestirenos/metabolismo , Proteínas Priônicas/química , Proteínas Priônicas/isolamento & purificação , Compostos de Sulfidrila/química
8.
FEMS Microbiol Lett ; 367(3)2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32124920

RESUMO

Agrobacterium tumefaciens strain SCUEC1 is a nicotine-degrading bacterium, which has been recently isolated from the tobacco waste-contaminated field soil. However, the mechanism for nicotine degradation in this strain remains unclear. Here, we analyze the function and biological properties of the agnH gene in the strain SCUEC1. The overexpression of the AgnH protein was detected by SDS-PAGE analysis, and functional insight of the AgnH protein was carried out with monitoring the changes of maleic acid into fumaric acid by high performance liquid chromatography (HPLC). Moreover, the effects of temperature, pH and metal ions on the enzymatic activities of the AgnH protein were also analyzed. The results demonstrated that the agnH gene was successfully ligated to the plasmid pET28a. The optimal condition for the enzymatic activities for the AgnH, approximately 28.0 kDa, was determined as 37 °C, pH 8.0 and 25 µM Mg2+. Conclusively, the agnH gene fulfils an important role in the conversion of maleic acid into fumaric acid involved in nicotine-degradation pathways in Agrobacterium tumefaciens strain SCUEC1.


Assuntos
Agrobacterium tumefaciens/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Nicotina/metabolismo , Agrobacterium tumefaciens/genética , Fumaratos/química , Concentração de Íons de Hidrogênio , Maleatos/metabolismo , Temperatura
9.
Biochim Biophys Acta Biomembr ; 1862(5): 183209, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32004520

RESUMO

Styrene maleic acid copolymers (SMA) form discoidal lipid nanoparticles (lipid nanodisks) that mimic plasma high-density lipoproteins. We have previously prepared and characterized lipid nanodisks composed of SMA and the neutral phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). In the present study, we tested whether the surface charges can alter the physicochemical and biological properties of lipid-SMA discoidal particles. Unlike the case of DMPC alone, addition of saline to the buffer was necessary to induce the formation of lipid-SMA complexes containing either 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) or 1,2-dimyristoyl-3-trimethylammonium-propane (DMTAP), with formation efficiency being dependent on the concentration of charged lipids. After purification, DMPG- or DMTAP-containing discoidal particles with an approximate size of 10 nm were obtained in a manner similar to DMPC alone. Although DMPG and DMTAP appeared to be similarly incorporated into the lipid nanodisks, the zeta potentials of both particles were comparable. That is, no significant differences were observed in the physicochemical properties between the lipid-SMA nanodisks. Compared to DMPC-SMA nanodisks, the uptake of DMPG or DMTAP-containing discoidal particles by RAW264 cells was increased for both particle types, whereas in MDA-MB-231 cells, only DMTAP-containing discoidal particle uptake was increased. In addition, fluorescence microscopy revealed that lipid-SMA nanodisks are localized adjacent to the plasma membrane of RAW264 cells but in MDA-MB-231 cells they accumulated in the center of the cell. Furthermore, these particles caused cytotoxicity in a cell-type dependent manner, with high toxicity in MDA-MB-231. These results raised the possibility that compositional alterations in lipid-SMA discoidal particles may modulate biological reactions in vivo.


Assuntos
Lipoproteínas/química , Maleatos/química , Maleatos/metabolismo , Poliestirenos/química , Poliestirenos/metabolismo , Membrana Celular/química , Dimiristoilfosfatidilcolina/química , Gotículas Lipídicas/química , Lipoproteínas/metabolismo , Nanopartículas/química , Fosfolipídeos/química , Solubilidade , Estireno/química
10.
Int J Mol Sci ; 21(2)2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963306

RESUMO

Alcoholic beverages stimulate pancreatic enzyme secretions by inducing cholecystokinin (CCK) release. CCK is the major stimulatory hormone of pancreatic exocrine secretions, secreted from enteroendocrine I-cells of the intestine. Fermentation products of alcoholic beverages, such as maleic and succinic acids, influence gastric acid secretions. We hypothesize that maleic and succinic acids stimulate pancreatic exocrine secretions during beer and wine ingestion by increasing CCK secretions. Therefore, the effects of maleic and succinic acids on CCK release were studied in duodenal mucosal cells and the enteroendocrine cell line STC-1. Mucosal cells were perfused for 30 min with 5 min sampling intervals, STC-1 cells were studied under static incubation for 15 min, and supernatants were collected for CCK measurements. Succinate and maleate-induced CCK release were investigated. Succinate and maleate doses dependently stimulated CCK secretions from mucosal cells and STC-1 cells. Diltiazem, a calcium channel blocker, significantly inhibited succinate and maleate-induced CCK secretions from mucosal cells and STC-1 cells. Maleate and succinate did not show cytotoxicity in STC-1 cells. Our results indicate that succinate and maleate are novel CCK-releasing factors in fermented alcoholic beverages and could contribute to pancreatic exocrine secretions and their pathophysiology.


Assuntos
Colecistocinina/metabolismo , Mucosa Intestinal/citologia , Bebidas Alcoólicas , Animais , Linhagem Celular , Diltiazem/metabolismo , Fermentação/fisiologia , L-Lactato Desidrogenase/metabolismo , Maleatos/metabolismo , Ratos , Ácido Succínico/metabolismo
11.
Biochim Biophys Acta Mol Basis Dis ; 1866(5): 165682, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31931102

RESUMO

Propionic acidemia is caused by lack of propionyl-CoA carboxylase activity. It is biochemically characterized by accumulation of propionic (PA) and 3-hydroxypropionic (3OHPA) acids and clinically by severe encephalopathy and cardiomyopathy. High urinary excretion of maleic acid (MA) and 2-methylcitric acid (2MCA) is also found in the affected patients. Considering that the underlying mechanisms of cardiac disease in propionic acidemia are practically unknown, we investigated the effects of PA, 3OHPA, MA and 2MCA (0.05-5 mM) on important mitochondrial functions in isolated rat heart mitochondria, as well as in crude heart homogenates and cultured cardiomyocytes. MA markedly inhibited state 3 (ADP-stimulated), state 4 (non-phosphorylating) and uncoupled (CCCP-stimulated) respiration in mitochondria supported by pyruvate plus malate or α-ketoglutarate associated with reduced ATP production, whereas PA and 3OHPA provoked less intense inhibitory effects and 2MCA no alterations at all. MA-induced impaired respiration was attenuated by coenzyme A supplementation. In addition, MA significantly inhibited α-ketoglutarate dehydrogenase activity. Similar data were obtained in heart crude homogenates and permeabilized cardiomyocytes. MA, and PA to a lesser degree, also decreased mitochondrial membrane potential (ΔΨm), NAD(P)H content and Ca2+ retention capacity, and caused swelling in Ca2+-loaded mitochondria. Noteworthy, ΔΨm collapse and mitochondrial swelling were fully prevented or attenuated by cyclosporin A and ADP, indicating the involvement of mitochondrial permeability transition. It is therefore proposed that disturbance of mitochondrial energy and calcium homeostasis caused by MA, as well as by PA and 3OHPA to a lesser extent, may be involved in the cardiomyopathy commonly affecting propionic acidemic patients.


Assuntos
Maleatos/metabolismo , Mitocôndrias Cardíacas/patologia , Mioblastos Cardíacos/patologia , Propionatos/metabolismo , Animais , Cálcio/metabolismo , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Fracionamento Celular , Linhagem Celular , Metabolismo Energético , Humanos , Masculino , Mitocôndrias Cardíacas/metabolismo , Dilatação Mitocondrial , Mioblastos Cardíacos/citologia , Mioblastos Cardíacos/metabolismo , Oxigênio/análise , Oxigênio/metabolismo , Acidemia Propiônica/complicações , Acidemia Propiônica/metabolismo , Acidemia Propiônica/patologia , Ratos
12.
Cell Chem Biol ; 27(2): 245-251.e3, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31831268

RESUMO

Biological membranes are complex barriers in which membrane proteins and thousands of lipidic species participate in structural and functional interactions. Developing a strategic approach that allows uniform labeling of membrane proteins while maintaining a lipidic environment that retains functional interactions is highly desirable for in vitro fluorescence studies. Herein, we focus on complementing current methods by integrating the powerful processes of unnatural amino acid mutagenesis, bioorthogonal labeling, and the detergent-free membrane protein solubilization based on the amphiphilic styrene-maleic acid (SMA) polymer. Importantly, the SMA polymer preserves a thermodynamically stable shell of phospholipids. The approach that we present is both rapid and generalizable providing a population of uniquely labeled membrane proteins in lipid nanoparticles for quantitative fluorescence-based studies.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Imagem Individual de Molécula/métodos , Aminoácidos/química , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Escherichia coli/metabolismo , Corantes Fluorescentes/química , Maleatos/química , Maleatos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , Nanopartículas/química , Fosfolipídeos/química , Poliestirenos/química , Poliestirenos/metabolismo , Solubilidade
13.
Pestic Biochem Physiol ; 158: 47-53, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31378360

RESUMO

Buprofezin is a chitin synthesis inhibitor that is very effective against Homopteran pests, such as the white-backed planthopper (WBPH), S. furcifera (Horvath). In the present study, resistance selection, cross-resistance and mechanisms of buprofezin resistance were investigated in this planthopper species. However, the mechanism associated with resistance to growth regulator insecticides (IGRs) remains largely unknown. A resistant strain (Bup-R) with a resistance level (22-fold) to buprofezin was developed through continuous selection for 47 generations from a laboratory susceptible strain (Bup-S). The results showed that the Bup-R exhibited no cross-resistance to other tested insecticides. Synergism tests showed that piperonyl butoxide (PBO) (SR = 3.9-fold) and diethyl maleate (DEM) (SR = 1.8-fold) had synergistic effects on buprofezin toxicity in the resistant strain (F47). Enzyme activity results revealed an approximate 5.7-fold difference in cytochrome P450 monooxygenase and a 2-fold difference in glutathione S-transferase (GST) between the resistant and susceptible strains, suggesting that the increased activity of these two enzymes is likely the main detoxification mechanism involved in resistance to buprofezin in this species. Furthermore, the mRNA expression levels of cytochrome P450 (CYP) and GST genes by quantitative real-time PCR results indicated that sixteen P450 and one GST gene were significantly overexpressed in the Bup-R strain, among which thirteen P450 genes and one GST gene were >2-fold higher than in the Bup-S strain. The present study increases our knowledge of the buprofezin resistance mechanism in S. furcifera and provides a useful reference for integrated pest management (IPM) strategies.


Assuntos
Hemípteros/efeitos dos fármacos , Inseticidas/farmacologia , Tiadiazinas/farmacologia , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Hemípteros/metabolismo , Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Maleatos/metabolismo , Butóxido de Piperonila/farmacologia , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
14.
J Phys Chem A ; 123(36): 7710-7719, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31433182

RESUMO

Maleamate amidohydrolase (NicF) is a key enzyme in vitamin B3 metabolism that catalyzes the hydrolysis of maleamate to produce maleic acid and ammonia. Unlike most members from the amidohydrolase superfamily it does not require a metal ion. Here, we use multiscale computational enzymology to investigate the catalytic mechanism, substrate binding, oxyanion hole, and roles of key active site residues of NicF from Bordetella bronchiseptica. In particular, molecular dynamics (MD) simulations, quantum mechanics/molecular mechanics (QM/MM) and QTAIM methods have been applied. The mechanism of the NicF-catalyzed reaction proceeds by a nucleophilic addition-elimination sequence involving the formation of a thioester enzyme intermediate (IC2 in stage 1) followed by hydrolysis of the thioester bond to form the products (stage 2). Consequently, the formation of IC2 in stage 1 is the rate-limiting step with a barrier of 88.8 kJ·mol-1 relative to the reactant complex, RC. Comparisons with related metal-dependent enzymes, particularly the zinc-dependent nicotinamidase from Streptococcus pneumonia (SpNic), have also been made to further illustrate unique features of the present mechanism. Along with -NH- donor groups of the oxyanion hole (i.e., HN-Thr146, HN-Cys150), the active site ß-hydroxyl of threonine (HO-ßThr146) is concluded to play a role in stabilizing the carbonyl oxygen of maleamate during the mechanism.


Assuntos
Amidoidrolases/química , Amidoidrolases/metabolismo , Biocatálise , Maleatos/metabolismo , Simulação de Dinâmica Molecular , Teoria Quântica , Bordetella bronchiseptica/enzimologia , Hidrólise , Maleatos/química , Estrutura Molecular
15.
Appl Environ Microbiol ; 85(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31324629

RESUMO

l-Aspartate has been widely used in medicine and the food and chemical industries. In this study, Serratia marcescens maleate cis-trans isomerase (MaiA) and Escherichia coli aspartase (AspA) were coupled and coexpressed in an engineered E. coli strain in which the byproduct metabolic pathway was inactivated. The engineered E. coli strain containing the dual-enzyme system (pMA) was employed to bioproduce l-aspartate from maleate with a conversion of 98%. We optimized the activity ratio of double enzymes through ribosome binding site (RBS) regulation and molecular modification of MaiA, resulting in an engineered strain: pMA-RBS4-G27A/G171A. The conversion of l-aspartate biotransformed from maleate using the pMA-RBS4-G27A/G171A strain was almost 100%. It required 40 min to complete the whole-cell catalysis, without the intermediate product and byproduct, compared to 120 min before optimization. The induction timing and the amount of inducer in a 5-liter fermentor were optimized for scale-up of the production of l-aspartate. The amount of produced l-aspartate using the cells obtained by fermentation reached 419.8 g/liter (3.15 M), and the conversion was 98.4%. Our study demonstrated an environmentally responsible and efficient method to bioproduce l-aspartate from maleate and provided an available pathway for the industrial production of l-aspartate. This work should greatly improve the economic benefits of l-aspartate, which can now be simply produced from maleate by the engineered strain constructed based on dual-enzyme coupling.IMPORTANCE l-Aspartate is currently produced from fumarate by biological methods, and fumarate is synthesized from maleate by chemical methods in industry. We established a biosynthesis method to produce l-aspartate from maleate that is environmentally responsible, convenient, and efficient. Compared to conventional l-aspartate production, no separation and purification of intermediate products is required, which could greatly improve production efficiency and reduce costs. As environmental issues are attracting increasing attention, conventional chemical methods gradually will be replaced by biological methods. Our results lay an important foundation for the industrialization of l-aspartate biosynthesis from maleate.


Assuntos
Ácido Aspártico/biossíntese , Escherichia coli/metabolismo , Maleatos/metabolismo , Serratia marcescens/enzimologia , Proteínas de Bactérias/metabolismo , Catálise , Escherichia coli/genética , Fermentação , Engenharia Metabólica , Serratia marcescens/genética , cis-trans-Isomerases/metabolismo
16.
Bioprocess Biosyst Eng ; 42(9): 1483-1494, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31076865

RESUMO

Due to environmental concern, the research to date has tended to focus on how textile dye removal can be carried out in a greener manner. Therefore, this study aims to evaluate the decolorization and biotransformation pathway of Mordant Orange-1 (MO-1) by Cylindrocephalum aurelium RY06 (C. aurelium RY06). Decolorization study was conducted in a batch experiment including the investigation of the effects of physio-chemical parameters. Enzymatic activity of C. aurelium RY06 during the decolorization was also investigated. Moreover, transformation and biodegradation of MO-1 by C. aurelium RY06 were observed using the gas chromatography-mass spectrometry. Manganese peroxidase, lignin peroxidase, laccase, 1,2-dioxygenase, and 2,3-dioxygenase enzymes were detected during the decolorization. In general, the present work concluded that the MO-1 was successfully degraded by C. aurelium RY06 and transformed to be maleic acid and to be isophtalic acid.


Assuntos
Compostos Azo/metabolismo , Corantes/metabolismo , Fungos/metabolismo , Têxteis , Biotransformação , Proteínas Fúngicas/metabolismo , Maleatos/metabolismo , Oxirredutases/metabolismo , Ácidos Ftálicos/metabolismo
17.
Mol Cell Biochem ; 458(1-2): 99-112, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31032535

RESUMO

Maleic acid (MA), which has been reported to be highly excreted in propionic acidemia (PAcidemia), was demonstrated to cause nephropathy by bioenergetics impairment and oxidative stress, but the effects on kidney mitochondrial respiration has not yet been properly investigated. Therefore, the present study investigated the effects of MA (0.05-5 mM), as well as of propionic (PA) and 3-hydroxypropionic (3OHPA) acids (5 mM) that accumulate in PAcidemia, on mitochondrial respiration supported by glutamate, glutamate plus malate or succinate in mitochondrial fractions and homogenates from rat kidney, as well as in permeabilized kidney cells. MA markedly decreased oxygen consumption in state 3 (ADP-stimulated) and uncoupled (CCCP-stimulated) respiration in glutamate and glutamate plus malate-respiring mitochondria, with less prominent effects when using succinate. We also found that PA significantly decreased state 3 and uncoupled respiration in glutamate- and glutamate plus malate-supported mitochondria, whereas 3OHPA provoked milder or no changes. Furthermore, glutamate dehydrogenase and α-ketoglutarate dehydrogenase activities necessary for glutamate oxidation were significantly inhibited by MA in a dose-dependent and competitive fashion. The MA-induced decrease of state 3 and uncoupled respiration found in mitochondrial fractions were also observed in homogenates and permeabilized renal cells that better mimic the in vivo cellular milieu. Taken together, our data indicate that MA, and PA to a lesser extent, disturb mitochondrial-oxidative metabolism in the kidney with the involvement of critical enzymes for glutamate oxidation. It is postulated that our present findings may be possibly involved in the chronic renal failure observed in patients with PAcidemia.


Assuntos
Glutamato Desidrogenase/metabolismo , Ácido Glutâmico/metabolismo , Complexo Cetoglutarato Desidrogenase/metabolismo , Rim/metabolismo , Maleatos/metabolismo , Mitocôndrias/metabolismo , Animais , Masculino , Oxirredução , Ratos , Ratos Wistar
18.
Free Radic Biol Med ; 135: 1-14, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30790656

RESUMO

Elaborate antioxidant pathways have evolved to minimize the threat of excessive reactive oxygen species (ROS) and to regulate ROS as signaling entities. ROS are chemically and functionally similar to reactive sulfur species (RSS) and both ROS and RSS have been shown to be metabolized by the antioxidant enzymes, superoxide dismutase and catalase. Here we use fluorophores to examine the effects of a variety of inhibitors of antioxidant pathways on metabolism of two important RSS, hydrogen sulfide (H2S with AzMC) and polysulfides (H2Sn, where n = 2-7, with SSP4) in HEK293 cells. Cells were exposed to inhibitors for up to 5 days in normoxia (21% O2) and hypoxia (5% O2), conditions also known to affect ROS production. Decreasing intracellular glutathione (GSH) with l-buthionine-sulfoximine (BSO) or diethyl maleate (DEM) decreased H2S production for 5 days but did not affect H2Sn. The glutathione reductase inhibitor, auranofin, initially decreased H2S and H2Sn but after two days H2Sn increased over controls. Inhibition of peroxiredoxins with conoidin A decreased H2S and increased H2Sn, whereas the glutathione peroxidase inhibitor, tiopronin, increased H2S. Aminoadipic acid, an inhibitor of cystine uptake did not affect either H2S or H2Sn. In buffer, the glutathione reductase and thioredoxin reductase inhibitor, 2-AAPA, the glutathione peroxidase mimetic, ebselen, and tiopronin variously reacted directly with AzMC and SSP4, reacted with H2S and H2S2, or optically interfered with AzMC or SSP4 fluorescence. Collectively these results show that antioxidant inhibitors, generally known for their ability to increase cellular ROS, have various effects on cellular RSS. These findings suggest that the inhibitors may affect cellular sulfur metabolism pathways that are not related to ROS production and in some instances they may directly affect RSS or the methods used to measure them. They also illustrate the importance of carefully evaluating RSS metabolism when biologically or pharmacologically attempting to manipulate ROS.


Assuntos
Antioxidantes/metabolismo , Sulfeto de Hidrogênio/metabolismo , Sulfetos/metabolismo , Enxofre/metabolismo , Butionina Sulfoximina/metabolismo , Catalase/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Células HEK293 , Humanos , Maleatos/metabolismo , Redes e Vias Metabólicas , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
19.
Sci Total Environ ; 656: 910-920, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30625677

RESUMO

Seawater reverse osmosis (SWRO) is a commonly used desalination technique owing to its lesser environmental and economic impacts as compared to thermal desalination techniques. Antiscalants are used in SWRO to reduce membrane scaling caused by the supersaturation of salts present in feed water. However, to remain effective in reducing membrane scaling, antiscalants should be highly stable and resistant to biological degradation by seawater microorganisms. In this research, several bacteria from Qatar's seawater were isolated and screened for their ability to use antiscalants as a carbon and energy source. The biodiversity of antiscalant degrading seawater bacteria was demonstrated through combining the techniques of MALDI-TOF MS and principle component analysis. It was found that the bacteria isolated from Qatar's seawater such as H. aquamarina, H. elongata, P. fragi, P. stutzeri and others can degrade antiscalants and use them as a carbon and energy source. It was observed that the growth rates varied based on the type of antiscalant and the bacteria used. Among the tested strains, H. aquamarina, which is also known for its potential to cause biofouling, demonstrated the highest growth rates in antiscalants media. Thus, it was concluded that there is wide variety of bacteria in Qatar's seawater that can biodegrade the antiscalants; reducing their efficiency to combat membrane scaling. Since, these antiscalants will be used as a source of carbon and energy, microbial growth will increase resulting in enhanced membrane biofouling in SWRO.


Assuntos
Acrilatos/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Maleatos/metabolismo , Microbiota , Água do Mar/microbiologia , Bactérias/classificação , Bactérias/metabolismo , Filtração , Membranas Artificiais , Catar , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Purificação da Água
20.
Redox Biol ; 20: 19-27, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30261343

RESUMO

Diethyl maleate (DEM), a thiol-reactive α,ß-unsaturated carbonyl compound, depletes glutathione (GSH) in exposed cells and was previously shown by us to elicit a stress response in Caenorhabditis elegans that, at lower concentrations, results in enhanced stress resistance and longer lifespan. This hormetic response was mediated through both the Nrf2 ortholog, SKN-1, and the forkhead box O (FOXO) family transcription factor DAF-16. As FOXO signaling is evolutionarily conserved, we analyzed here the effects of DEM exposure on FOXO in cultured human cells (HepG2, HEK293). DEM elicited nuclear accumulation of GFP-coupled wild-type human FOXO1, as well as of a cysteine-deficient FOXO1 mutant. Despite the nuclear accumulation of FOXO1, neither FOXO1 DNA binding nor FOXO target gene expression were stimulated, suggesting that DEM causes nuclear accumulation but not activation of FOXO1. FOXO1 nuclear exclusion elicited by insulin or xenobiotics such as arsenite or copper ions was attenuated by DEM, suggesting that DEM interfered with nuclear export. In addition, insulin-induced FOXO1 phosphorylation at Thr-24, which is associated with FOXO1 nuclear exclusion, was attenuated upon exposure to DEM. Different from FOXO-dependent expression of genes, Nrf2 target gene mRNAs were elevated upon exposure to DEM. These data suggest that, different from C. elegans, DEM elicits opposing effects on the two stress-responsive transcription factors, Nrf2 and FOXO1, in cultured human cells.


Assuntos
Núcleo Celular/metabolismo , Proteína Forkhead Box O1/metabolismo , Maleatos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Glutationa , Células HEK293 , Células Hep G2 , Humanos , Espaço Intracelular/metabolismo , Modelos Biológicos , Fosforilação , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...